
django-tabination Documentation
Release 0.4.0

Danilo Bargen

January 19, 2017

Contents

1 Table of Contents 3

2 Indices and tables 11

i

ii

django-tabination Documentation, Release 0.4.0

django-tabination is a library that enables you to easily build your own tab navigation based on class based views.

The main idea behind this library is that the properties of the tabs are defined inside the view and aren’t stored in
the database. The database based approach (which is used for example by django-sitetree or django-treenav, often
based on django-mptt) is great for CMS-like projects with users editing the pages directly via the admin, but it
causes many problems when the pages are mainly coded directly in the views because the navigation is then not
tracked by your version control system and can be off-sync / inconsistent between different versions or systems.

There are also projects that provide a set of template tags to mark a page as active, which can then be used to
render the navigation template accordingly (e.g. django-tabs). But that solution is very limited and not as flexible
as django-tabination.

django-tabination allows you to create tabs directly in your class based views by settings some specific attributes.
This can be simplified even further by creating a common base class for all your tab views that handles all the
logic necessary to build a dynamically configured tab navigation.

Features include conditional displaying/hiding of a tab, translation of the tab labels, tab hierarchies to build multi-
level navigations and more.

Contents 1

https://github.com/idlesign/django-sitetree
https://github.com/caktus/django-treenav
https://github.com/django-mptt/django-mptt
http://code.google.com/p/django-tabs/

django-tabination Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Table of Contents

1.1 Installation and Configuration

There are several ways to install django-tabination, either by using a package manager like pip or by manually
downloading and installing a copy of the library.

1.1.1 Installing

The recommended way to install django-tabination is directly from pypi using pip:

pip install django-tabination

If you prefer not to use an automated package installer, you can download a copy of django-tabination and install
it manually. To install it, navigate to the directory containing setup.py on your console and type:

python setup.py install

1.1.2 Configuration

Currently there is no further configuration needed to use django-tabination. Take a look at the Usage docs to see
how to implement your tabs.

1.1.3 Source Code

The source code of django-tabination is licensed under the LGPLv3 license and can be forked on GitHub.

1.2 Usage

django-tabination is a library that enables you to easily build your own tab navigation templates by extending the
views.TabView base class.

The library is strongly based on the class based views that Django has introduced with version 1.3. You cannot
use this library if your project is using function based views.

1.2.1 Creating tab views

For a working custom tab view, the following things are requried:

• You need to extend the views.TabView base class

• You need to add the class attribute _is_tab = True to your view

3

http://www.pip-installer.org/
https://pypi.python.org/pypi/django-tabination
https://pypi.python.org/pypi/django-tabination
https://github.com/dbrgn/django-tabination
https://docs.djangoproject.com/en/dev/topics/class-based-views/

django-tabination Documentation, Release 0.4.0

• You need to specify the tab_group.

• Each tab needs a tab_id.

• In order for the tab to be visible in your navigation, you need to set a tab_label.

• You need to define a template_name.

Note: The _is_tab attribute is needed for the class to be tracked by a tracking metaclass. Therefore it needs to
be present when the classes are parsed by the Python interpreter and cannot be added later, e.g. with a decorator.

Getting started

The base class resides in tabination.views. Import it like this:

from tabination.views import TabView

This is a very simple example tab:

class SpamTab(TabView):
_is_tab = True
tab_id = 'spam'
tab_group = 'main_navigation'
tab_label = 'Spam'
template_name = 'tabs/spam_tab.html'

Now your page will be rendered using the template tabs/spam_tab.html, because views.TabView extends
Django’s generic TemplateView.

If you want, you can also use other generic view mixins (or any other custom mixins) to provide additional
functionality. A good example would be the SingleObjectMixin:

from django.views.generic.detail import SingleObjectMixin

class SpamTab(SingleObjectMixin, TabView):
_is_tab = True
tab_id = 'spam'
tab_group = 'main_navigation'
tab_label = 'Spam'
template_name = 'tabs/spam_tab.html'
model = models.SpamCan

Now the SpamCan object with a primary key provided from your URL definition will be passed on to your
template as object (see SingleObjectMixin documentation).

Warning: As of Django 1.4, above example does not work due to a bug in the class based views imple-
mentation (get_context_data in the generic mixins does not call super()). This is fixed in Django
1.5 (see Ticket #16074). If you’re still using Django 1.4 you can either use generic mixins that don’t affect
get_context_data, manually call TabView.get_context_data(self, **kwargs) from your
tab code or create your own mixins. See the next section for an example.

You can do everything with your TabView that you can do with normal class based views. The only things
that you need to bear in mind is that views.TabView always needs to be the base class (on the right side
of the parentheses). It may be overloaded using mixins but cannot be combined with other views that override
get_context_data.

Customizing your tab view

You can further customize your tab view by overloading the views.TabView‘s class attributes with your own
class- or instance attributes or properties (if logic is required).

4 Chapter 1. Table of Contents

https://docs.djangoproject.com/en/dev/ref/class-based-views/mixins/
https://docs.djangoproject.com/en/dev/ref/class-based-views/mixins-single-object/
https://code.djangoproject.com/ticket/16074
http://docs.python.org/library/functions.html#property

django-tabination Documentation, Release 0.4.0

For available attributes, see views.TabView documentation. You can also create your own attributes, as long
as they’re used in your template.

Keep in mind that if the tab you’re working with is not the currently loaded tab, it is just an instance of the tab that
has not passed through the dispatching functions. In case you need some variables that you get only by dispatching
the request (e.g. self.kwargs), you can use the special attribute self.current_tab to gain access to the
currently loaded tab. See also section Accessing request data.

Here is an example of a more sophisticated tab view hierarchy:

from django.contrib.auth.decorators import login_required
from django.utils import decorators
from django.utils.translation import ugettext as _

from tabination.views import TabView

class MainNavigationBaseTab(TabView):
"""Base class for all main navigation tabs."""
tab_group = 'main_navigation'
tab_classes = ['main-navigation-tab']

def get_context_data(self, **kwargs):
context = super(MainNavigationBaseTab, self).get_context_data(**kwargs)
context['spam'] = 'ham'
return context

@property
def tab_classes(self):

"""If user is logged in, set ``logged_in_only`` class."""
classes = super(MainNavigationBaseTab, self).tab_classes[:]
if self.current_tab.request.user.is_authenticated():

classes += ['logged_in_only']
return classes

class SpamTab(MainNavigationBaseTab):
"""A simple TabView."""
_is_tab = True
tab_id = 'spam'
tab_label = _('Spam')
template_name = 'spam_tab.html'

class HamTab(MainNavigationBaseTab):
"""TabView is only visible after authentication."""
_is_tab = True
tab_id = 'ham'
tab_label = _('Ham')
tab_rel = 'nofollow,noindex'
template_name = 'ham_tab.html'

@decorators.method_decorator(login_required)
def dispatch(self, *args, **kwargs):

"""Make sure only authenticated users can access this tab."""
return super(HamTab, self).dispatch(*args, **kwargs)

@property
def tab_visible(self):

"""Show tab only if current user is logged in."""
return self.current_tab.request.user.is_authenticated()

class HiddenTab(MainNavigationBaseTab):

1.2. Usage 5

django-tabination Documentation, Release 0.4.0

"""A hidden TabView."""
_is_tab = True
tab_id = 'hidden'
template_name = 'hidden_tab.html'

In this example, a base tab class was created. Because it does not contain the _is_tab class attribute, it is not
listed as a tab itself (which wouldn’t be possible anyway, as it has no tab_id). The three classes SpamTab,
HamTab and HiddenTab extend the MainNavigationBaseTab. The base class predefines a tab group,
so each extending tab doesn’t have to define it again, therefore following the DRY principle. It also adds a new
context variable called spam to the context of each tab.

The second tab, HamTab, overrides some more attributes. In this example, the tab is only visible in the template if
the current user is logged in. Additionally, if the user is logged in, a new CSS class logged_in_only gets added to
the tab_classes list, in order to be able to show the user that this is a “secret” tab that guest users aren’t able
to see. A copy of the tab_classes list is used because otherwise the CSS class would be added to all classes
which extend MainNavigationBaseTab.

The third tab, HiddenTab, doesn’t define a tab_label and is therefore not shown at all (see default behavior
of views.TabView.tab_visible()).

Warning: Keep in mind that if you’re overriding get_context_data(self, **kwargs), you need
to call the superclasses’ versions of the method first (like in the example above). Otherwise, you’ll override
the tabs context variable.

Accessing request data

If you want to access self.request in a function used to render the tab item in your template, you may notice
that it is not available. This is because the tab instances other than your current tab don’t pass through the request
dispatching functions.

If you need access to your current request information, you can access it via the self.current_tab attribute,
e.g.:

class SpamTab(TabView):
(...)
def username(self):

current_tab = self.current_tab
user = current_tab.request.user
return user.username

1.2.2 Tab navigation template

Available context variables:

• tabs

• current_tab_id

• parent_tabs

• parent_tab_id

• child_tabs

• view

In order to display the tabs in your templates, you need to create a tab list using the {{ tabs }} context variable.
You can also use {{ current_tab_id }} to access the id of the currently active tab. Here is an example
template:

6 Chapter 1. Table of Contents

django-tabination Documentation, Release 0.4.0

<div id="tab_navigation">

{% for tab in tabs %}
<li class="{{ tab.tab_classes|join:" " }}{% if tab.tab_id == current_tab_id %} active{% endif %}">

{% if tab.tab_counter %}{{ tab.tab_counter }}{% endif %}
{{ tab.tab_label }}

{% endfor %}

</div>

Each item in the {{ tabs }} list is an instance of a tab in the same tab group as the current tab. Therefore
you can use all class- and instance variables as well as all functions without arguments that are defined in the
views.TabView base class or in the extending class.

If you want to access the current tab instance, you can simply use the view variable which is provided by Django’s
ContextMixin.

It’s a good idea to put this template code in a file called e.g. blocks/tabination.html and to include it
everywhere you want the navigation to be displayed:
...
{% include "blocks/tabination.html" %}
...

1.2.3 Multilevel navigation

django-tabination can also be used for multilevel navigation. You can use the tab_parent attribute to connect
two navigation levels. The attribute is defined at the child base navigation class. The following example has
a tab called ParentTab which is at the first navigation level. The base class of the second navigation level
is ChildNavigationBaseTab. This class defines the attribute tab_parent to connect itself and all it’s
siblings with the parent navigation level.

from tabination.views import TabView

First navigation level

class ParentNavigationBaseTab(TabView):
"""Base class for all parent navigation tabs."""
tab_group = 'parent_navigation'
tab_classes = ['parent-navigation-tab']

class ParentTab(ParentNavigationBaseTab):
_is_tab = True
tab_id = 'parent'
tab_label = 'Parent'
template_name = 'parent_tab.html'

class EmptyTab(ParentNavigationBaseTab):
_is_tab = True
tab_id = 'empty'
tab_label = 'Empty'
template_name = 'empty_tab.html'

Second navigation level

1.2. Usage 7

https://docs.djangoproject.com/en/dev/ref/class-based-views/mixins-simple/#django.views.generic.base.ContextMixin

django-tabination Documentation, Release 0.4.0

class ChildNavigationBaseTab(TabView):
"""Base class for all child navigation tabs."""
tab_group = 'child_navigation'
tab_classes = ['child-navigation-tab']
tab_parent = ParentTab

class FirstChildTab(ChildNavigationBaseTab):
_is_tab = True
tab_id = 'first_child'
tab_label = 'First Child'
template_name = 'first_child_tab.html'

class SecondChildTab(ChildNavigationBaseTab):
_is_tab = True
tab_id = 'second_child'
tab_label = 'Second Child'
template_name = 'second_child_tab.html'

Multilevel template context

If you use multilevel navigation new values are added to your template context.

If the current tab has a parent tab the following values are added:

parent_tab_id The tab_id of the parent tab.

parent_tabs Instances of all tabs at the parent level.

The following variable is added to the template context if the current tab is a parent tab and has one or more
children:

child_tabs A list of instances of all child tabs.

Because the {{ current_tab }} and {{ current_tab_id }} context variables always refer to the
globally current tab and not to the active tab in the current tab group, you would have to write different templates
for the different levels of navigation to properly set an active class on the tab item. To avoid this problem,
you can use the tab.group_current_tab attribute which is provided with every tab object and refers to the
active tab of the current tab group, no whether where in the hierarchy the group is positioned.

If you didn’t quite understand the things above (it’s complicated I know...), just take a look at the following
example:

{# blocks/tab.html #}

<li class="{{ tab.tab_classes|join:" " }}{% if tab.tab_id == tab.group_current_tab.tab_id %} active{% endif %}">

{{ tab.tab_label }}

{# blocks/navigation.html #}

<div id="tab_navigation">
{% if parent_tabs %}

{% for tab in parent_tabs %}
{% include 'blocks/tab.html' %}

{% endfor %}

{% endif %}

8 Chapter 1. Table of Contents

django-tabination Documentation, Release 0.4.0

{% for tab in tabs %}
{% include 'blocks/tab.html' %}

{% endfor %}

{% if child_tabs %}

{% for tab in child_tabs %}
{% include 'blocks/tab.html' %}

{% endfor %}

{% endif %}

</div>

1.2.4 Sorting tabs

Tabs are sorted by their weight attribute automatically. Tabs with a lower weight are sorted before tabs with
a higher weight. The default value of weight is 0. Negative values are also allowed and will be sorted before
postive values. If two tabs have the same weight the natural order of the classes is used.

1.3 TabView

This page documents the attribute values and functions of the TabView base class.

1.4 Testing

Current build status: To set up a testing environment, you need to install Django and some additional dependen-
cies:

$ pip install Django
$ make install

To run the test suite, use

$ make test

If you want to generate a coverage report, use

$ make report

To see a HTML version of the coverage report, there’s

$ make report-html

Finally, to check conformance to the PEP8 coding standard, use

$ make flake8

Note: The flake8 configuration ignores E128 (continuation line under-indented for visual indent) errors and
allows a max line length of 99 characters per line.

1.3. TabView 9

django-tabination Documentation, Release 0.4.0

10 Chapter 1. Table of Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

11

	Table of Contents
	Indices and tables

